Search results for "Partitioning around medoids"

showing 2 items of 2 documents

Looking for representative fit models for apparel sizing

2014

This paper is concerned with the generation of optimal fit models for use in apparel design. Representative fit models or prototypes are important for defining a meaningful sizing system. However, there is no agreement among apparel manufacturers and each one has their own prototypes and size charts i.e. there is a lack of standard sizes in garments from different apparel manufacturers. We propose two algorithms based on a new hierarchical partitioning around medoids clustering method originally developed for gene expression data. We are concerned with a different application; therefore, the dissimilarity between the objects has to be different and must be designed to deal with anthropometr…

Hierarchical treeInformation Systems and ManagementComputer sciencecomputer.software_genreMachine learningManagement Information SystemsINCA statisticArts and Humanities (miscellaneous)Mean split silhouetteDevelopmental and Educational PsychologyMarket shareCluster analysisbusiness.industryClothingMedoidSizingHIPAMOutlierPartitioning around medoidsArtificial intelligenceData miningbusinesscomputerInformation SystemsFit models
researchProduct

A fast and recursive algorithm for clustering large datasets with k-medians

2012

Clustering with fast algorithms large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a sequential version of the $k$-means algorithm, a new class of recursive stochastic gradient algorithms designed for the $k$-medians loss criterion is proposed. By their recursive nature, these algorithms are very fast and are well adapted to deal with large samples of data that are allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the set of stationary points of the underlying loss criterion. A particular attention is paid to the averaged versions, which…

Statistics and ProbabilityClustering high-dimensional dataFOS: Computer and information sciencesMathematical optimizationhigh dimensional dataMachine Learning (stat.ML)02 engineering and technologyStochastic approximation01 natural sciencesStatistics - Computation010104 statistics & probabilityk-medoidsStatistics - Machine Learning[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]stochastic approximation0202 electrical engineering electronic engineering information engineeringComputational statisticsrecursive estimatorsAlmost surely[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsCluster analysisComputation (stat.CO)Mathematicsaveragingk-medoidsRobbins MonroApplied MathematicsEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]stochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]MedoidComputational MathematicsComputational Theory and Mathematicsonline clustering020201 artificial intelligence & image processingpartitioning around medoidsAlgorithm
researchProduct